Etikett: x86

  • MS DOS 1.x

    Från en blinkande kommandoprompt på en diskettbaserad IBM PC till grunden för hela Windows-eran – MS-DOS blev operativsystemet som definierade 1980-talets datorrevolution. Med rötter i 86-DOS och inspiration från CP/M skapade Microsoft en plattform som snabbt spreds till över 70 tillverkare och gjorde den IBM-kompatibla PC:n till global standard. Trots sin tekniska enkelhet kom MS-DOS att forma både mjukvarumarknaden och den moderna persondatorns historia.

    När IBM lanserade sin första persondator 1981 förändrades datorvärlden i grunden. Bakom den nya maskinen låg ett textbaserat operativsystem som snart skulle bli synonymt med hela PC-eran: MS-DOS. Med sin enkla kommandoprompt och sina strikta regler – som 8.3-filnamn – blev det fundamentet för miljontals datorer och lade grunden för Microsofts globala dominans.

    MS-DOS, en förkortning av MicroSoft Disk Operating System, utvecklades för x86-baserade persondatorer och släpptes den 12 augusti 1981. IBM licensierade systemet under namnet PC DOS 1.0 för sin IBM Personal Computer 5150, medan Microsoft sålde det till andra tillverkare som MS-DOS. De två versionerna utvecklades parallellt under tolv år innan de gradvis skildes åt 1993.

    Ursprunget går tillbaka till 86-DOS, utvecklat av Tim Paterson på Seattle Computer Products. Systemet var inspirerat av CP/M från Digital Research men anpassat för Intel 8086-processorn och utrustat med filsystemet FAT12. Microsoft köpte rättigheterna 1981 för 25 000 dollar och anpassade systemet för IBM:s nya dator. Den modulära designen gjorde det möjligt för olika tillverkare att skriva egna hårdvarunära drivrutiner medan kärnan förblev gemensam – en avgörande faktor för spridningen.

    Den första versionen, DOS 1.0, var tekniskt enkel. Den kunde läsa och skriva 160 KB disketter, köra program i .COM- och .EXE-format och hantera batchfiler. Alla filer låg i rotkatalogen; det fanns inga katalogträd, inga hårddiskar och ingen omdirigering. Kommandotolken COMMAND.COM innehöll endast ett fåtal interna kommandon. Ändå räckte detta. Kombinationen av IBM:s hårdvara och Microsofts licensmodell skapade en plattform som andra företag kunde kopiera. Inom ett år hade Microsoft licensierat MS-DOS till över 70 företag.

    Version 1.1, som kom 1982, stödde dubbelsidiga disketter på 320 KB och markerade början på bred OEM-licensiering. Under 1980-talet växte systemet snabbt. Version 2.0 (1983) introducerade katalogträd, hårddiskstöd, omdirigering och en mer Unix-liknande filhantering. Version 3.x gav stöd för större diskar, nätverk och nya diskettformat. Version 4.x introducerade stöd för större partitioner och ett grafiskt DOS Shell, men led av buggar. Version 5.0 (1991) blev en stabil milstolpe med förbättrad minneshantering och en fullskärmseditor. Den sista fristående versionen, 6.22 från 1994, inkluderade diskkomprimering och avancerade systemverktyg.

    Samtidigt uppstod konkurrens. Digital Research lanserade DR-DOS som ett kompatibelt alternativ. IBM och Microsoft samarbetade kring OS/2, tänkt som efterträdare. Men när Windows 3.0 slog igenom 1990 började tyngdpunkten förskjutas. MS-DOS blev basen under grafiska Windows-versioner. Windows 95, 98 och Me använde DOS för uppstart och bakåtkompatibilitet, men användarna arbetade i ett grafiskt gränssnitt.

    Tekniskt var MS-DOS en monolitisk kärna, huvudsakligen skriven i x86-assembler. Tidiga versioner omfattade bara några tusen rader kod. Systemet var enanvändarbaserat och saknade multitasking, något som Microsoft istället erbjöd genom sitt Unix-baserade Xenix. Under 1990-talet blev DOS alltmer en underliggande komponent. Windows NT-linjen, som inte byggde på DOS, tog gradvis över, och 64-bitarsversioner av Windows avskaffade till slut all inbyggd DOS-emulering.

    Supporten för klassiska versioner upphörde 2001, och 2006 avslutades stödet för de sista DOS-baserade Windows-versionerna. Trots detta lever arvet kvar. 2014 och senare år publicerade Microsoft källkoden till tidiga versioner som 1.25, 2.0 och 4.00 under MIT-licens för utbildningsändamål, vilket gav nya generationer möjlighet att studera hur ett historiskt operativsystem var uppbyggt.

    MS-DOS var aldrig det mest avancerade systemet tekniskt sett. Det saknade fleranvändarstöd, skyddat minne och multitasking. Men det hade rätt kombination av enkelhet, kommersiell strategi och timing. Genom att bli standard på IBM-kompatibla datorer skapade det den plattform som Windows senare kunde ta över.

    Från en blinkande A-prompt på en 16 KB-maskin till grunden för en global mjukvaruindustri – MS-DOS var motorn bakom PC-revolutionen och en av de viktigaste byggstenarna i den moderna datorhistorien.

    Teknikfakta: MS-DOS och DOS 1.0–1.1
    Namn
    MS-DOS (MicroSoft Disk Operating System), IBM PC DOS
    Lansering
    1981 (PC DOS 1.0 samtidigt med IBM PC)
    Ursprung
    Bygger på 86-DOS (Tim Paterson), inspirerat av CP/M
    Målplattform
    x86 (Intel 8086/8088), initialt diskettbaserat
    Kärntyp
    Monolitisk
    Programmerat i
    x86-assembler (tidiga versioner)
    Gränssnitt
    Kommandorad (COMMAND.COM)
    Kärnkomponenter (DOS 1.x)
    IBMBIO.COM (I/O-drivrutiner), IBMDOS.COM (kärna/API), COMMAND.COM (tolk)
    Lagring (DOS 1.0)
    160 KB 5,25″ disketter (enkelsidigt)
    Lagring (DOS 1.1)
    320 KB 5,25″ disketter (dubbelsidigt)
    Filstruktur (DOS 1.x)
    Ingen kataloghierarki (endast rotkatalog)
    Stöd saknas i DOS 1.x
    Hårddiskar, katalogträd, pipes/omdirigering, laddningsbara drivrutiner
    Minimikrav (praktiskt)
    Minst 32 KB RAM för att kunna boota (bootsektor laddas vid 7C00h)
    Kommandon (DOS 1.0, interna)
    DIR, COPY, ERASE, PAUSE, REM, RENAME, TYPE
    Verktyg i paketet
    DEBUG, LINK, EDLIN (DOS 1.x), EXE2BIN (DOS 1.1)
    BASIC-roll
    BASIC.COM/BASICA.COM gav ROM-BASIC diskstöd och en tidig “IDE”-känsla
    Efterföljare
    Windows tog över gradvis; DOS blev bas/bootlager i tidiga Windows-versioner
    Historisk betydelse
    Standardiserade IBM-kompatibla PC:n och möjliggjorde klonmarknaden

    Annons

    Strul med e-posten? Hjälp med TV? Problem med wifi?
    Digital Fixare

  • Intel 8087 – chippet som lärde PC:n att räkna på riktigt

    När persondatorn slog igenom i början av 1980-talet var den förvånansvärt dålig på matematik. Heltalsberäkningar gick bra, men så fort man behövde arbeta med decimaltal, trigonometriska funktioner eller avancerade vetenskapliga beräkningar blev allt långsamt. Lösningen fick ett eget chip: Intel 8087, världens första flyttalsprocessor för x86-plattformen.

    Detta tillägg förvandlade PC:n från en ren kontorsmaskin till ett verktyg som kunde användas för tekniska, vetenskapliga och ingenjörsmässiga beräkningar.

    Varför behövdes en separat matematikprocessor?

    De tidiga x86-processorerna, som Intel 8086 och Intel 8088, saknade hårdvarustöd för flyttalsaritmetik. Alla beräkningar med decimaltal fick därför utföras i mjukvara, vilket ofta var hundratals gånger långsammare än motsvarande hårdvara.

    8087 konstruerades som en koprocessor som arbetade parallellt med huvudprocessorn. Den tog hand om flyttalsoperationer som addition, multiplikation, division, kvadratrötter samt mer avancerade funktioner som logaritmer och trigonometri. I många program ökade prestandan dramatiskt, i vissa fall med flera hundra procent.

    Hur samarbetade 8087 med huvudprocessorn?

    Samarbetet mellan 8087 och huvudprocessorn var ovanligt elegant för sin tid. När huvudprocessorn stötte på en särskild instruktion markerad som ett så kallat escape-opcode ignorerade den själv operationen. I stället snappade 8087 upp instruktionen direkt från databussen och utförde beräkningen.

    Under tiden kunde huvudprocessorn fortsätta exekvera annan kod. Det innebar att systemet faktiskt kunde arbeta parallellt: heltalsberäkningar i CPU:n och flyttalsberäkningar i koprocessorn samtidigt. För att undvika att 8087 fick nya instruktioner innan den var klar användes ibland WAIT-instruktionen, men trots detta var vinsten i beräkningshastighet betydande.

    Stackarkitekturen som förbryllade programmerare

    Till skillnad från vanliga x86-register använde 8087 inte ett direkt adresserbart registerset. I stället arbetade den med en stack av åtta flyttalsregister, numrerade från st0 till st7. Instruktionerna placerade värden på stacken, utförde beräkningar och tog bort resultat igen.

    Denna modell gjorde instruktionerna kraftfulla och kompakta, men den krävde noggrann hantering. Felaktig användning kunde leda till stacköver- eller underflöden, något som både programmerare och kompilatorer fick lära sig att hantera. Stackmodellen kom senare att leva vidare i hela x87-familjen.

    Grunden till IEEE:s flyttalsstandard

    Under utvecklingen av 8087 lade Intel stor vikt vid numerisk korrekthet. Avrundning, representation av mycket stora och mycket små tal samt förutsägbara resultat var centrala mål. Detta arbete blev en viktig grund för den internationella standarden IEEE 754, som än i dag definierar hur flyttal fungerar i de flesta datorer.

    8087 introducerade även ett internt 80-bitars flyttalsformat med extra precision. Detta format används fortfarande internt i x87-enheter för att minska avrundningsfel vid långa och komplexa beräkningar.

    Ett genombrott för PC-plattformen

    När IBM inkluderade en särskild koprocessorsockel på IBM PC:s moderkort ökade intresset för 8087 kraftigt. Program för CAD, teknisk simulering och vetenskapliga beräkningar kunde nu köras på en vanlig PC i stället för på dyra minidatorer.

    Detta bidrog starkt till att etablera persondatorn som ett seriöst arbetsverktyg även inom tekniska och akademiska miljöer.

    Från separat chip till integrerad funktion

    Efter 8087 följde 80287 och 80387, men med Intel 80486DX integrerades flyttalsenheten direkt i huvudprocessorn. Därmed försvann behovet av separata matematikprocessorer.

    Trots detta lever arvet kvar. Många av de principer, instruktioner och format som introducerades med 8087 finns fortfarande kvar i moderna system, om än ofta dolda bakom mer avancerade exekveringsenheter.

    Slutsats

    Intel 8087 var ett specialiserat och relativt dyrt chip, men dess betydelse kan knappast överskattas. Den gjorde avancerad matematik praktiskt möjlig på persondatorer, lade grunden för internationella standarder och förändrade hur PC-plattformen användes.

    Det var chippet som gav persondatorn förmågan att räkna på riktigt.

    Youtube innehåll om Intel 8087

    Teknisk faktaruta: Intel 8087

    Typ
    Flyttalskoprocessor (FPU) för 8086/8088
    Introducerad
    1980
    Klockfrekvens
    Ca 4–10 MHz (beroende på variant)
    Arkitektur
    x87 (tillägg till x86-16)
    Register
    8 nivåer djup flyttalsstack (st0–st7), intern 80-bitars precision
    Dataformat
    32-bit (single), 64-bit (double), 80-bit (extended) samt BCD- och heltalsformat
    Instruktioner
    Flyttalsinstruktioner (ofta med F-prefix, t.ex. FADD, FMUL); kodas via ESC/”11011”-mönster
    Samarbete med CPU
    Parallell exekvering: 8087 övervakar buss/instruktionsflöde och arbetar samtidigt som 8086/8088
    Synkronisering
    Program kan behöva vänta in coprocessorn med WAIT/FWAIT
    Antal transistorer
    Uppges ofta till runt 65 000 (källor varierar)
    Tillverkningsteknik
    HMOS, ungefär 4,5 µm (senare krympt till cirka 3 µm)
    Kapsel
    40-pin DIP (vanligtvis keramisk för bättre värmeavledning)
    Efterföljare
    80287 (senare integrerad FPU från och med 80486DX)

    Annons

    Strul med e-posten? Hjälp med TV? Problem med wifi?
    Digital Fixare

  • Intel 8086 – processorn som formade PC-världen

    En processor framtagen som en tillfällig lösning kom att lägga grunden för nästan all modern PC-teknik. När Intel 8086 lanserades i slutet av 1970-talet var den varken den snabbaste eller mest eleganta på marknaden – men genom smarta kompromisser, oväntade designval och ett avgörande genombrott i IBM PC:n blev den startpunkten för x86-arkitekturen som än i dag driver världens datorer.

    Intel 8086 – processorn som formade PC-världen

    När Intel lanserade 8086 år 1978 var det inte med ambitionen att skapa en tidlös standard. Processorn var snarare ett praktiskt steg vidare från tidigare 8-bitarskonstruktioner, framtagen under tidspress och med tydliga tekniska kompromisser. Ändå är det just denna krets som lade grunden för x86-arkitekturen – den arkitekturfamilj som fortfarande driver merparten av världens persondatorer och servrar.

    Ett steg upp till 16 bitar

    8086 var Intels första fullt 16-bitars mikroprocessor. Det innebar att den kunde hantera större tal, effektivare textbearbetning och mer avancerade program än sina föregångare som 8080 och 8085. För programmerare och systemkonstruktörer betydde det att mikrodatorer nu började närma sig de möjligheter som tidigare varit förbehållna minidatorer.

    Samtidigt ville Intel behålla kontinuitet. Instruktionsuppsättningen och programmeringsmodellen hade tydliga rötter i de äldre 8-bitarsprocessorerna, vilket gjorde det relativt enkelt att porta befintlig programvara. Det här visade sig bli en av 8086-familjens största styrkor.

    En megabyte minne – tack vare segmentering

    En av de mest omtalade egenskaperna hos 8086 är dess sätt att hantera minne. Processorn kunde adressera upp till en megabyte, vilket var enormt vid slutet av 1970-talet. Problemet var att dess register bara var 16 bitar breda, vilket normalt sett bara räcker till 64 kilobyte.

    Lösningen blev den berömda segmenteringen. I stället för en enda adress använde processorn två delar: ett segment och ett offset. Segmentet flyttades fyra bitar åt vänster och adderades med offset, vilket gav en 20-bitars fysisk adress. På så sätt kunde man nå hela minnesområdet utan att göra registren bredare.

    Tekniskt sett var detta elegant, men i praktiken blev det en källa till komplexitet. Samma minnesadress kunde beskrivas på många olika sätt, och programmerare tvingades förhålla sig till begrepp som ”near” och ”far” pekare. Segmenteringen löste ett akut hårdvaruproblem men skapade långvariga mjukvarumässiga konsekvenser.

    Två arbetsenheter i samma processor

    8086 var också ovanligt modern i sin interna uppdelning. Den bestod i praktiken av två samarbetande delar. Den ena, bussgränssnittsenheten, hämtade instruktioner från minnet och lade dem i en liten kö. Den andra, exekveringsenheten, tolkade och utförde instruktionerna.

    Detta innebar att instruktioner kunde hämtas i förväg medan tidigare instruktioner fortfarande kördes. Det var en tidig form av parallellism, långt ifrån dagens avancerade pipelines men ändå ett viktigt steg mot effektivare utnyttjande av processorns tid.

    När programkoden flöt på utan många hopp fungerade detta mycket bra. Vid täta hopp och minnesåtkomster minskade vinsten. Ändå visade konstruktionen tydligt hur framtida processorer skulle komma att byggas.

    Inte snabbast, men mest användbar

    8086 var inte den snabbaste eller mest eleganta 16-bitarsprocessorn på marknaden. Konkurrenter som Motorola 68000 hade en renare arkitektur och var enklare att programmera. Trots detta var det Intels processor som vann.

    En viktig anledning var att Intel även tog fram 8088, en variant med 8-bitars databuss. Den var långsammare men billigare att bygga system kring, eftersom den kunde använda enklare och billigare kringkretsar. Det var denna processor som valdes till den första IBM PC:n.

    När IBM hade valt 8088 följde resten av marknaden efter. Programvara, expansionskort och operativsystem anpassades till x86-familjen, och plötsligt spelade det mindre roll om arkitekturen var perfekt. Det viktiga var att allt fungerade tillsammans.

    Ett arv som fortfarande lever

    Efter 8086 följde 80286, 80386, 80486 och senare Pentium-generationerna. Varje ny processor blev kraftfullare, bredare och snabbare, men nästan alltid med bakåtkompatibilitet som ledstjärna. Instruktioner och idéer från slutet av 1970-talet finns därför fortfarande kvar i moderna processorer, ibland djupt begravda men fortfarande nödvändiga.

    Till och med dagens datorer startar i ett läge som är kompatibelt med 8086, innan de växlar över till modernare driftlägen. Det är ett tydligt tecken på hur djupt denna processor har präglat datorteknikens utveckling.

    Slutsats

    Intel 8086 var inte en perfekt konstruktion. Den var full av kompromisser, särskilt i sin minnesmodell. Men just dessa kompromisser gjorde den möjlig att bygga, sälja och använda i stor skala. I teknikhistorien är det ofta inte den elegantaste lösningen som vinner, utan den som råkar passa bäst in i sin tid.

    8086 är ett skolexempel på detta. Den var tillräckligt bra, tillräckligt flexibel och tillräckligt tidig. Resultatet blev en arkitektur som, nästan ett halvt sekel senare, fortfarande formar hur datorer fungerar.

    Innehåll ifrån youtube om 8086 och 8088

    Teknisk faktaruta: Intel 8086

    Lanserad
    8 juni 1978
    Ordlängd
    16 bitar
    Adressbuss
    20 bitar (upp till 1 MiB adressrymd)
    Databuss
    16 bitar (extern, multiplexad med adresslinjer)
    Klockfrekvens
    Typiskt 5–10 MHz (beroende på variant)
    Register
    8 st 16-bitars huvudregister (AX, BX, CX, DX, SI, DI, BP, SP) + IP, flaggor och 4 segmentregister (CS, DS, SS, ES)
    Minnesmodell
    Segment:offset (fysisk adress = 16×segment + offset)
    Instruktionshämtning
    6-byte förhämtningskö (BIU/EU-separation för överlappad fetch/execute)
    Avbrott
    256 vektorer, vektortabell vid 0x0000–0x03FF
    I/O
    Separat I/O-adressrymd: 64 KiB portar
    Förpackning
    40-pin DIP (DIP40)
    Transistorer
    ≈29 277
    Varianter
    8088 (8-bitars extern databuss), 80C86 (CMOS)
    Typiska stödchips
    8237 (DMA), 8253/8254 (timer), 8255 (PIO), 8259 (PIC), 8284 (klockgenerator), 8288 (bus controller)

    Annons

    Strul med e-posten? Hjälp med TV? Problem med wifi?
    Digital Fixare

  • Intel 80286 – processorn som tog PC:n in i framtiden

    Intel 80286 var en av de där komponenterna som sällan får hjälterollen i datorhistorien, men som ändå förändrade allt i bakgrunden. Den dök upp i en tid när PC:n höll på att växa ur rollen som enkel kontorsmaskin och tog de första stegen mot att bli ett seriöst fleranvändar- och multitaskingsystem. Med stöd för mer minne, hårdvarubaserat skydd och nya arbetssätt lade 286:an grunden för den moderna PC-arkitekturen, även om samtiden inte fullt ut var redo att ta vara på dess möjligheter.

    Intel 80286

    I början av 1980-talet stod persondatorn inför ett vägskäl. Den första generationens PC hade visat att datorer kunde bli folkliga, men de var fortfarande enkla maskiner med tydliga begränsningar. Lösningen hette Intel 80286, ofta kallad 286: en processor som i tysthet lade grunden för hur moderna datorer fungerar.

    Ett stort steg efter 8086

    När Intel lanserade 80286 år 1982 var den en uppföljare till 8086/8088 – processorerna som drivit de första IBM-PC:erna. På ytan såg 286:an ut som ett evolutionärt steg: fortfarande 16-bitars och i hög grad kompatibel med äldre program.

    Den stora skillnaden var adressrymden. 80286 kunde adressera 16 megabyte minne, jämfört med 8086:ans 1 megabyte. I dag låter det litet, men då var det ett enormt kliv som öppnade för mer avancerade system och större program.

    Skyddat läge – en ny idé

    80286 var den första x86-processorn som fick ett så kallat skyddat läge, protected mode. Det innebar att processorn kunde hålla isär program så att de inte skrev över varandras minne, ge olika rättigheter till olika program och stödja multitasking på riktigt.

    Problemet var att PC-världen inte var redo. De flesta DOS-program var skrivna för ett fritt och oreglerat minneslandskap och fungerade dåligt i skyddat läge. Dessutom var 80286 konstruerad så att den inte enkelt kunde växla tillbaka till real mode utan en hårdvaruåterställning, vilket gjorde utvecklare frustrerade.

    PC/AT – standardmaskinen

    Det stora genombrottet kom 1984 när IBM använde 80286 i IBM PC/AT. Den maskinen blev snabbt en industristandard och startskottet för en våg av AT-kompatibla datorer.

    Under andra halvan av 1980-talet byggdes mängder av datorer med 286-processorer, ofta klockade mellan 6 och 12 MHz, och senare upp till 20–25 MHz från tillverkare som AMD och Harris. Tack vare förbättrad intern design kunde 286:an göra betydligt mer arbete per klockcykel än 8086, och i många program upplevdes den som ungefär dubbelt så snabb vid samma klockfrekvens.

    Ett missförstått mellansteg

    Trots sina tekniska framsteg hamnade 80286 i en märklig historisk position. Den var för avancerad för det gamla DOS-tänket, men samtidigt inte flexibel nog för att bli den perfekta bryggan till framtiden.

    När Intel 80386 kom, med 32-bitars arkitektur och ett virtuellt 8086-läge som gjorde äldre program enklare att köra, blev det tydligt hur mycket PC-marknaden längtat efter just den sortens smidighet. Till och med Bill Gates kritiserade 286:ans begränsningar kring kompatibilitet och multitasking, vilket säger en del om hur hårt den tidens mjukvaruvärld pressade hårdvaran.

    Arvet efter 80286

    Även om 80286 i dag är bortglömd av de flesta var den avgörande för PC-utvecklingen. Den introducerade minnesskydd, hårdvarustöd för multitasking och idén att en PC kunde vara mer än en enkel “ett-program-i-taget”-maskin.

    Intel 80286 var inte slutmålet, men den blev bron som gjorde nästa stora steg möjligt.

    Innehåll på youtube om Intel 80286

    Annons

    Strul med e-posten? Hjälp med TV? Problem med wifi?
    Digital Fixare

  • IBM PC 5150 – datorn som gjorde “PC” till ett vardagsord

    När IBM lanserade PC 5150 år 1981 förändrades persondatorvärlden i grunden. Det som började som ett försök att snabbt ta sig in på en växande marknad kom att bli den tekniska standard som nästan alla moderna datorer bygger på. Trots att IBM PC inte var den mest avancerade eller färgstarka datorn som fanns vid tiden, var den extremt väl genomtänkt – modulär, lätt att bygga ut och baserad på öppna komponenter. Det gjorde att den inte bara blev en succé, utan även en mall som klontillverkare kopierade och utvecklade vidare. IBM PC 5150 banade väg för den PC-era som än idag präglar hur vi använder datorer.

    När IBM lanserade sin första persondator i augusti 1981 var det få som anade att den skulle definiera en helt ny standard. IBM Personal Computer, modell 5150, blev inte bara ännu en dator – den blev mallen som nästan alla framtida PC-datorer skulle följa. Mycket av det vi idag tar för givet i en “vanlig PC” går att spåra direkt tillbaka till den här maskinen.

    Bakgrunden – när jätten IBM kliver ner på skrivbordet

    Före 1980-talet var IBM framför allt ett namn för stora, dyra företagsdatorer och stordatörer. Samtidigt började små, billiga hemdatorer från till exempel Apple, Commodore och Tandy ta fart och säljas i hundratusental. De kostade bara några hundra dollar, och plötsligt stod IBM där och såg hur konkurrenterna tog plats på skrivborden – även hos deras egna kunder.

    Internt på IBM växte insikten: om de inte snabbt tog fram en billig, liten dator riskerade de att missa en hel marknad. Lösningen blev ett litet, nästan “startup-liknande” projekt i Boca Raton, Florida – med ovanligt fria tyglar för att vara IBM. Man fick tillåtelse att:

    • använda standardkomponenter från andra tillverkare
    • köpa in operativsystem utifrån
    • sälja via återförsäljare som ComputerLand och Sears

    För IBM var det här ett rejält avsteg från hur man brukade göra. Och just den ovanligt öppna strategin är en stor del av förklaringen till varför IBM PC fick så enorm betydelse.

    Öppen arkitektur – PC:n som alla fick bygga vidare på

    En av de mest avgörande designprinciperna var “öppen arkitektur”. I praktiken innebar det:

    • standardprocessor: Intel 8088 på 4,77 MHz
    • standardminnen: vanliga DRAM-kretsar
    • öppet dokumenterad systembuss (det som senare kallas ISA)
    • noggrant publicerade tekniska manualer

    IBM behöll BIOS-firmwaren som sin egen, men resten dokumenterades i detalj. Tanken var att:

    • externa företag skulle kunna bygga expansionskort (grafik, serieport, nätverk osv.)
    • programutvecklare enkelt skulle kunna skriva mjukvara

    Det här gav en enorm effekt: redan inom något år fanns det mängder av program, grafikkort, minneskort, kommunikationskort och mycket annat – långt mer än IBM ens själva sålde.

    Hårdvaran – enkel, robust och byggd för att kunna växa

    Sett med dagens ögon är IBM PC 5150 extremt modest, men 1981 var den både seriös och imponerande.

    Processor och minne

    • CPU: Intel 8088, en 16-bitars arkitektur internt med 8-bitars databuss
    • Klockfrekvens: 4,77 MHz (framräknad från TV-frekvensen 14,31818 MHz delat med 3)
    • RAM:
      • tidiga modeller: 16 KB lött på moderkortet, expanderbart till 64 KB
      • senare moderkort: upp till 256 KB på moderkortet
      • total praktisk gräns: 640 KB konventionellt minne (resten av adressrymden upptogs av ROM och hårdvara)

    Dessutom fanns en tom sockel för en matematikkop­rocessor (Intel 8087), för snabbare flyttalsberäkningar – viktigt för tekniska och vetenskapliga program.

    Grafik och skärm

    Här gjorde IBM något ovanligt för tiden: man sålde inte en “inbyggd” videolösning, utan val mellan två olika grafikkort:

    • MDA (Monochrome Display Adapter)
      • skarp monokrom text
      • perfekt för kontor, terminalarbete, programmering
      • kunde inte visa grafik
    • CGA (Color Graphics Adapter)
      • färggrafik, text + grafiklägen
      • signal i TV-hastighet (NTSC), så man kunde koppla den till en vanlig TV eller en färgmonitor
      • enklare spelgrafik och diagram

    Det här gjorde att PC:n både kunde vara en seriös kontorsdator med superskarp text – och en enklare spel- eller hem-dator med färggrafik, beroende på hur man utrustade den.

    Lagring – från kassettband till disketter (och så småningom hårddisk)

    Grundidén var att man skulle kunna köra den riktigt billigt:

    • kassettport: möjlighet att använda bandspelare för lagring, styrd via BASIC i ROM
    • diskettenheter (5,25 tum):
      • först 160 KB per sida, sedan 320/360 KB per disk
      • en eller två inbyggda enheter i fronten

    I praktiken köpte nästan alla diskett, och kassettstödet dog snabbt ut. Hårddisk fanns inte som standard på den första PC:n, men kom senare genom:

    • IBM PC XT – efterföljare med inbyggd hårddisk
    • IBM 5161 Expansion Unit – extra låda med fler kortplatser och hårddisk

    Tangentbordet – den oväntade stjärnan

    Tangentbordet var en av de stora “selling points”:

    • rejäl, mekanisk konstruktion (Model F)
    • distinkta, taktila tangenter
    • layout med full uppsättning funktions- och navigeringstangenter

    Många recensenter ansåg att det var det bästa tangentbordet som fanns på en mikro­ dator vid den tiden. I en värld av gummimembran och “chiclet”-tangenter stack det verkligen ut.

    Program och operativsystem – när DOS tog över världen

    IBM planerade från början att stödja flera operativsystem:

    • CP/M-86 (arvtagare till det enormt populära CP/M)
    • UCSD p-System (Pascal-orienterad miljö)
    • PC DOS (IBM:s variant av MS-DOS)

    I praktiken blev PC DOS (och därmed MS-DOS) snabbt den dominerande plattformen:

    • CP/M-86 kom sent och var dyrt
    • p-System blev en nischlösning
    • DOS följde med IBM:s egna lösningar och fick snabbt enormt programstöd

    Dessutom fanns:

    • BASIC i ROM – så att datorn alltid kunde starta upp i ett programmerbart läge utan diskett
    • växande programbibliotek: kalkylark, ordbehandlare, databaser, spel, terminalprogram

    Redan efter ett år fanns det hundratals program och systemet hade blivit utvecklarnas favoritplattform.

    Genombrottet – från “IBMs lilla dator” till industristandard

    IBM trodde initialt att de skulle sälja runt 220 000 datorer på tre år. I verkligheten exploderade efterfrågan:

    • leveranser upp mot 40 000 PC per månad
    • många kunder betalade i förskott utan att veta när datorn skulle levereras
    • stora företag började standardisera på IBM PC
    • i mitten av 1980-talet stod IBM för en enorm del av PC-marknaden

    Marknadsföringen hjälpte också. IBM använde en Chaplin-liknande figur i reklamfilmerna – “den lille luffaren” – för att framställa datorn som vänlig, mänsklig och lättillgänglig även för icke-experter.

    Klonsprängningen – när andra började bygga “PC”

    Eftersom IBM använde standardkomponenter och publicerade detaljerad dokumentation dröjde det inte länge innan andra företag började bygga datorer som:

    • körde samma program
    • använde samma expansionskort
    • fungerade på samma sätt – men var billigare eller snabbare

    Det enda verkliga hindret var BIOS, som var upphovsrättsskyddat. Men genom så kallad “clean room”-reverse engineering lyckades företag som Compaq, Phoenix, American Megatrends och andra ta fram fullt kompatibla BIOS-varianter utan att kopiera IBM:s kod.

    Resultatet blev:

    • en våg av IBM PC-kompatibla datorer – “PC-kloner”
    • hård konkurrens på pris och prestanda
    • att “IBM PC-kompatibel” blev en branschstandard

    Till slut blev själva IBM mindre viktigt än standarden man skapat. IBM sålde så småningom hela sin PC-verksamhet till Lenovo, men PC-arkitekturen lever vidare.

    Arvet – IBM PC som osynlig mall

    Det mesta vi idag förknippar med en “vanlig PC” har rötter i IBM 5150:

    • x86-arkitekturen (som i princip lever kvar än idag)
    • idéen om öppna expansionskort och dokumenterade gränssnitt
    • DOS/BIOS-modellen som grund för hur datorn startar
    • PC-tangentbordets layout och känsla

    Även om originalmaskinen sedan länge är museiföremål, ekar dess designval fortfarande i moderna stationära datorer, servrar – och till och med i äldre Intel-baserade Macar. IBM PC 5150 var aldrig den mest färgglada eller lekfulla hemdatorn, men den blev den mest inflytelserika. Det var datorn som gjorde att “PC” blev synonymt med “persondator” – och satte formen för en hel era av datorteknik.

    Teknisk faktaruta – IBM PC (Model 5150)

    TillverkareIBM
    ModellIBM Personal Computer (5150)
    Lansering12 augusti 1981
    TypStationär persondator
    CPUIntel 8088 @ 4,77 MHz
    RAM (grund)16 KB eller 64 KB
    RAM (max)640 KB (med expansionskort)
    ROMBIOS + IBM BASIC
    OperativsystemIBM PC DOS 1.0, CP/M-86, UCSD p-System
    Lagring1–2 st 5,25″ floppy (160/320 KB), kassettport på tidiga modeller
    GrafikMDA (mono), CGA (färg)
    BildskärmIBM 5151 (mono), 5153 (färg), TV via kompositvideo
    Ljud1-kanalig PC-högtalare
    InmatningIBM Model F tangentbord (83 tangenter)
    Expansion5 st ISA-platser (8-bit)
    AnslutningarSeriell port, parallellport, kassettport (tidiga modeller)
    Ström120/240 V AC
    Dimensionerca 51 × 42 × 14 cm
    Viktca 11–14 kg
    Lanseringsprisfrån 1 565 USD (1981)
    Tillverkning1981–1987
    EfterträdareIBM PC XT (1983)

    Annons

    Strul med e-posten? Hjälp med TV? Problem med wifi?
    Digital Fixare