Etikett: programmerbar räknare

  • HP 9800-serie

    HP 9800-serien lanserades i början av 1970-talet som ”programmerbara räknare”, men var i praktiken några av världens första skrivbordsdatorer. Med inbyggt programspråk, grafik och interaktiv användning lade de grunden för persondatorn – flera år innan begreppet ens blivit allmänt känt.

    I början av 1970-talet var datorer stora, dyra och oftast placerade i särskilda datorrum. De krävde utbildad personal, bokningssystem och omfattande infrastruktur. Mot denna bakgrund lanserade Hewlett-Packard något som kom att förändra synen på vad en dator kunde vara: HP 9800-serien.

    Maskinerna kallades officiellt programmerbara räknare, men i praktiken var de fullskaliga datorer avsedda att stå direkt på skrivbordet. Flera år innan persondatorn slog igenom hade HP redan gjort datorn personlig, åtminstone för ingenjörer, forskare och lärare.

    En dator som låtsades vara en räknare

    Den första modellen, HP 9810A från 1971, ersatte företagets tidigare HP 9100. Det verkliga genombrottet kom dock 1972 med HP 9830A. Den var utrustad med ett komplett BASIC-språk lagrat i ROM, alfanumeriskt tangentbord, möjlighet till extern lagring och stöd för grafik, matriser och avancerad matematik.

    Att Hewlett-Packard fortsatte kalla maskinen för räknare var ingen slump. På många företag var det betydligt enklare att få inköp godkänt av en ”calculator” än av en ”computer”. Marknadsföringen var därmed lika strategisk som teknisk.

    Gemensam hårdvaruplattform

    De tre första modellerna i serien, HP 9810, 9820 och 9830, byggde alla på samma grundläggande hårdvaruarkitektur. Trots att de introducerades bara tre till fyra år efter HP 9100 upplevs deras elektronik som betydligt modernare. Här tog HP ett tydligt steg bort från specialbyggda räknarkretsar och närmade sig en generell datorarkitektur.

    Processor

    HP 9800-serien använde en 16-bitars processor med en klockfrekvens på cirka 8 MHz. Processorn var mikroprogrammerad och kunde utföra 75 olika instruktioner. Mikroprogrammet lagrades i bipolär ROM och bestod av 256 ord om 28 bitar, fördelade över sju integrerade kretsar. Instruktionsuppsättningen var tydligt inspirerad av HP 2100-seriens minidatorer.

    Processorn hade fyra huvudregister: A, B, E och P. P-registret fungerade som programräknare. A- och B-registren var ackumulatorer, där A kunde användas för både binära och decimala operationer medan B endast stödde binära. E-registret var ett fyrabitars tillägg som användes vid skiftning av BCD-data. Därutöver fanns ett femte register, Q, som först innehöll aktuell instruktion och därefter användes som arbetsregister.

    ROM, firmware och utbyggnad

    Utöver mikroprogram-ROM användes n-kanals MOS-ROM för att lagra kalkylatorns firmware. När projektet inleddes var kretskortsburen ROM, som i HP 9100, fortfarande billigare än integrerade kretsar. HP valde ändå att satsa på MOS-teknik, ett beslut som visade sig vara framtidssäkert.

    ROM-kretsarna var på 4 kilobit och utvecklades internt av HP eftersom kommersiella komponenter inte uppfyllde kraven. De var organiserade som 512 ord om 8 bitar. Minnesarkitekturen gjorde det möjligt att installera utbyggnadsblock med specialfunktioner. På HP 9810 användes dessa bland annat för tangentfunktioner och periferistyrning. På HP 9820 gav varje block funktioner till grupper om tio tangenter. HP 9830 kunde använda upp till åtta block, men tack vare QWERTY-tangentbordet tillförde blocken i stället nya språkkommandon.

    RAM och minnesteknik

    Arbetsminnet bestod av Intel 1103, ett dynamiskt PMOS-RAM på 1 kilobit per krets. Systemet innehöll särskild hårdvara som uppdaterade minnet minst varannan millisekund. Denna typ av RAM fanns inte tillgänglig när HP 9100 konstruerades och markerar ett tydligt tekniksprång mellan generationerna.

    Före sin tid

    HP 9800-serien introducerade funktioner som i dag upplevs som självklara men som då var banbrytande. Maskinerna startade direkt i ett interaktivt läge där användaren kunde skriva uttryck, köra program och redigera kod utan inloggning eller väntetid.

    Markörstyrd textredigering, funktionsknappar med utbytbara etiketter och inbyggda grafikkommandon gjorde systemen ovanligt användarvänliga. Att rita diagram och matematiska funktioner krävde inga externa program eller stordatorer, allt fanns i maskinen.

    Kontaktlöst tangentbord

    Tangentborden var kontaktlösa och byggde på en transformatorprincip. Under varje tangent fanns en tryckt spole på kretskortet och i tangenten satt en metallskiva. När tangenten trycktes ned förändrades transformatorns egenskaper, vilket detekterades av en komparator. Avsaknaden av mekaniska kontakter gav mycket hög driftsäkerhet och lång livslängd.

    Konstruktion och kylning

    HP 9800-serien byggdes i kraftiga plåtkapslingar avsedda för professionellt bruk. Konstruktionen var lättare än HP 9100 men fortfarande robust. Den tätare komponentpackningen och den högre arbetshastigheten ökade värmeutvecklingen, vilket gjorde att en fläkt infördes som standard.

    Alla kretskort, inklusive nätaggregatet, anslöts via kantkontakter. För att minska risken för monteringsfel var kortutdragarna färgkodade och matchade motsvarande färg på kortplatserna, ett tidigt exempel på servicevänlig industridesign.

    Användes där det verkligen gällde

    HP 9800-datorerna användes i praktiska och ofta kritiska sammanhang. Inom flyg- och rymdindustrin användes de för tekniska beräkningar och simuleringar. Skolor och universitet tog dem i bruk i undervisning. Den amerikanska kustbevakningen använde dem för navigations- och kommunikationssystem.

    Deras kombination av portabilitet, robusthet och självständighet gjorde dem särskilt lämpade för miljöer där tillgång till stordatorer eller tillförlitliga kommunikationslinjer saknades.

    Programmering med BASIC och HPL

    De flesta modeller i serien programmerades i BASIC, ett språk anpassat för ingenjörers behov och tätt integrerat med maskinvaran. För vissa modeller erbjöds även HPL, High-Performance Language, ett registerbaserat språk optimerat för numeriska beräkningar.

    Grafikkommandona som följde med plotterutbyggnaderna kom senare att ligga till grund för ett gemensamt grafiksystem som återanvändes i flera andra HP-datorer och intelligenta terminaler.

    Bron till persondatorn

    HP 9800-serien utgjorde en viktig länk mellan minidatorernas värld och den framväxande persondatorn. Erfarenheterna från serien ledde vidare till HP Series 80 och senare till UNIX-baserade arbetsstationer i HP 9000-familjen.

    Under en kort period konkurrerade systemen med andra skrivbordsdatorer som IBM 5100, Tektronix 4051 och Wang 2200, innan marknaden slutligen togs över av persondatorer som Apple II och IBM PC.

    Ett bortglömt pionjärarbete

    I dag är HP 9800-serien relativt okänd utanför museer och samlarkretsar. Ändå lade den grunden för mycket av det som senare blev självklart: interaktiv programmering, grafik på skrivbordet och datorer som kunde användas direkt av ingenjörer, lärare och studenter.

    HP 9800 var inte bara en räknare som blev en dator. Den var en dator innan världen riktigt hade lärt sig att tänka i de banorna.

    Innehåll på youtube om HP 9800 serien

    Är flera avsnitt så mer finns på https://www.youtube.com/watch?v=LweofUSLSRo&list=PLzvLbUxGuZ-zv0jpoUe048ecMPVAJiPDA


    Fakta: HP 9800-serien

    Tillverkare
    Hewlett-Packard (HP)
    Lansering
    1971 (HP 9810A), 1972 (HP 9830A)
    Typ
    Programmerbar räknare / skrivbordsdator
    Processor
    Arkitektur baserad på HP 2100/1000 med stack
    Minne
    Ca 16–64 KB
    System & språk
    ROM-baserat BASIC; utbyggbart med ROM-kassetter (vissa modeller även HPL)
    Lagring
    Magnetkort eller kassettband beroende på modell; vissa system kunde kompletteras med disk
    Kännetecken
    Interaktiv programmering, funktionsknappar, grafik/plotterstöd, snabb termisk skrivare som tillval
    Utfasning
    Sent 1970-tal (familjen levde vidare i efterföljare som HP Series 80)



  • TI-92-serien – när grafräknaren tog steget mot datorvärlden

    När Texas Instruments släppte TI-92 i mitten av 1990-talet suddades gränsen mellan grafräknare och dator ut. Plötsligt kunde en handhållen maskin göra symbolisk algebra, rita 3D-grafer, köra program och styras med ett QWERTY-tangentbord – driven av samma typ av processor som satt i Amiga, Atari ST och tidiga Sun-arbetsstationer. TI-92-serien blev snabbt ett favoritverktyg för ingenjörer, studenter och matematiknördar som behövde ”riktig” datorkraft i väskan, långt innan dagens laptopar och surfplattor var självklara.

    När Texas Instruments lanserade TI-92 år 1995 var det inte längre bara en avancerad grafräknare – det var ett bärbart matematiklaboratorium. Med funktioner som symbolhantering, 3D-grafik, programmering och ett QWERTY-tangentbord utmanade den gränsen mellan kalkylator och dator. TI-92-serien blev snabbt ett favoritverktyg bland ingenjörer, matematiker och teknikelever som behövde kraftfulla verktyg i fickformat, även om storleken var märkbart större än andra grafräknare.

    Till skillnad från tidigare modeller kunde TI-92 hantera algebraiska uttryck exakt, lösa ekvationer symboliskt och plotta parametriska samt tredimensionella grafer. Den hade ett operativsystem inspirerat av den professionella matematikmjukvaran Derive, och tack vare möjligheten att skriva egna program i TI-BASIC blev den även ett verktyg för utvecklare.

    I hjärtat satt en Motorola MC68000-processor, samma typ av CPU som användes i Amiga och Atari ST, samt i tidiga Sun-arbetsstationer. Detta innebar att TI-92 hade en beräkningskapacitet som låg nära små datorer från samma tid, vilket gjorde den ovanligt kraftfull för en handhållen enhet.

    Ett QWERTY-tangentbord gav dessutom snabbare inmatning, men innebar att TI-92 klassades som dator i många länder och därför förbjöds vid prov som SAT och AP-examinationer, till skillnad från exempelvis TI-89 som erbjöd liknande funktioner men utan fullständigt tangentbord.

    Med efterföljaren TI-92 Plus introducerades flashminne och förbättrad skärm, medan Voyage 200 från 2002 vidareutvecklade serien med ännu mer lagringskapacitet i ett mer ergonomiskt chassi. Trots att serien inte längre tillverkas lever den vidare i form av emulatorer och entusiastgrupper och ses idag som en ikon inom avancerade beräkningsverktyg.

    TI-92-serien markerade en vändpunkt – den visade att en grafräknare kunde vara mer än bara ett räkneverktyg. Den blev ett mobilt forskningsinstrument och en förebild för framtidens tekniska hjälpmedel.

    Faktaruta: TI-92-serien

    Modeller: TI-92 (1995), TI-92 II (1996), TI-92 Plus (1998/1999), Voyage 200 (2002)

    Typ: Programmerbar grafräknare med inbyggt algebra­system (CAS)

    Målgrupp: Universitetsstudenter, ingenjörer, avancerad matematik och tekniska utbildningar

    Processor: Motorola MC68000 (68k-familjen), 10–12 MHz beroende på modell

    Minne: Upp till 256 kB RAM, upp till 4 MB flash (ca 2,7 MB användarminne i Voyage 200)

    Skärm: Monokrom LCD, 240 × 128 punkter, stöd för 2D/3D-grafer

    Tangentbord: Fullt QWERTY-tangentbord + funktions- och piltangenter

    Strömförsörjning: 4 × AA eller AAA-batterier (modellberoende) + knappcellsbatteri för minne/klocka

    Anslutningar: 2,5 mm I/O-port för kabelanslutning och filöverföring mellan räknare

    Smarta funktioner: Symbolisk algebra och kalkyl, ekvationslösning, matriser, statistik, regression, differentialekvationer, 3D-grafik och geometri

    Programmering: TI-BASIC samt stöd för tredjepartsprogram och spel

    Testbegränsningar: Ofta ej godkänd på standardiserade prov (t.ex. SAT/AP) på grund av QWERTY-tangentbordet

    Film på youtbue om TI 92

  • Texas Instruments TI-59 och TI-58 – fickräknare som blev små datorer

    När Texas Instruments lanserade TI-59 och TI-58 år 1977 suddades gränsen mellan miniräknare och dator ut. Med programmerbara funktioner, magnetkort och ROM-moduler kunde de lösa avancerade uppgifter som tidigare krävde en skrivbordsdator – i fickformat. De blev snabbt favoriter bland ingenjörer och studenter och lever vidare som klassiker i räknarhistorien.

    Introduktion

    Texas Instruments TI-59 och TI-58 lanserades 1977 och var mer än vanliga miniräknare – de fungerade som små fickdatorer. TI-59 var uppföljaren till SR-52 och fyrdubblade antalet programsteg, samtidigt som den introducerade magnetkortsläsare och ROM-moduler för färdiga program. Syskonmodellen TI-58 hade hälften så mycket minne och saknade kortläsare, men kunde liksom TI-59 köras med Master Library Module som innehöll nyttiga rutiner och till och med spel. TI-58C som kom 1979 lade till konstantminne.

    Design och system

    Designen var robust med ett tangentbord fullt av matematiska och programmeringsknappar, och på ovansidan kunde magnetkorten både läsas och förvaras med etiketter som fungerade som menyer för användarskrivna program. Till skillnad från Hewlett-Packards RPN-system använde TI-59 och TI-58 Algebraic Operating System (AOS), där beräkningar skrevs som på papper med upp till nio nivåer av parenteser. Programmeringen byggde på knapptryckningar, och man kunde skapa loopar, villkor och subrutiner – i teorin var TI-59 Turingkomplett.

    Minneskapacitet och lagring

    Minnet var flexibelt och kunde delas mellan programsteg och register, upp till 960 steg eller 100 register på TI-59 och 480 steg eller 60 register på TI-58. Magnetkortsläsaren i TI-59 gjorde det möjligt att spara och återanvända program snabbt, medan ROM-moduler utökade funktionaliteten för exempelvis statistik, investeringar och flygning.

    Tillbehör och skrivare

    Ett populärt tillbehör var PC-100-skrivaren som kunde skriva ut programlistor, resultat och enkel grafik, vilket gjorde kalkylatorn till en portabel minidator.

    Arv och betydelse

    TI-59 och TI-58 blev älskade bland ingenjörer och studenter som behövde mer än en vanlig räknare, och de betraktas idag som klassiska samlarobjekt.

    Fakta i korthet

    • Lansering: 1977 (TI-58/59), 1979 (TI-58C)
    • Programsteg: upp till 960 (TI-59), 480 (TI-58)
    • Register: upp till 100 (TI-59), 60 (TI-58)
    • Lagring: Magnetkort (endast TI-59), ROM-moduler
    • Display: LED, 10 siffror
    • Ström: NiCd-batteri + nätadapter
    • Tillbehör: PC-100 termisk skrivare
    • OS: AOS (Algebraic Operating System)
    • Status: Utgången, numera samlarobjekt

    Film på youtube om TI 59

    Videon är som standard inställd på tyska, men det går att välja engelskt ljudspår.

    Så programmerar man en Texas Instruments TI-59

    TI-59 är en programmerbar kalkylator från slutet av 1970-talet som blev populär bland bland annat tekniker och ingenjörer. Den använder så kallad ”keystroke-programmering”, vilket innebär att varje tangenttryckning sparas som ett programsteg. Kalkylatorn har omkring 100 programsteg internt (fler med magnetkort) och kan utföra loopar, dela upp program i sektioner och hantera relativt avancerade beräkningar.


    1. Aktivera programmeringsläge

    1. Slå på räknaren.
    2. Tryck på: 2nd → Op

    Nu befinner du dig i programmeringsläge och kalkylatorn börjar registrera tangenttryckningar som programsteg.

    Om du vill rensa programminnet innan du börjar:

    2nd  →  Clr  →  Pgm
    

    2. Exempelprogram: Enkel räkneslinga (addera 1, paus, upprepa)

    Detta är ett klassiskt exempel som ofta demonstrerades i varuhus: kalkylatorn ökar ett tal med 1, väntar och upprepar i en loop.

    Programsteg

    StegTangent(er)Funktion
    1+Addition
    21Talet 1
    3=Utför beräkning
    42nd PseLägg in paus
    5GTO 00Hoppa tillbaka till programstart

    Avsluta programmeringen genom att trycka:

    2nd  →  Pgm
    

    3. Köra programmet

    1. Nollställ räknaren (valfritt): CLR
    2. Kör programmet: R/S

    Räknaren kommer nu:

    • visa ett tal
    • öka det med 1
    • göra paus
    • upprepa kontinuerligt

    4. Loop med stoppvillkor (mer avancerat)

    Exempel: räkna upp från 1 till 100 och stoppa när värdet är uppnått.

    StegTangent(er)Funktion
    1LBL AStart under etikett A
    2+ 1 =Addera 1
    3STO 01Spara värde i register 01
    4RCL 01Hämta värde
    52nd Cmp 100Jämför med 100
    6GTO AÅtergå om värdet är under 100
    7R/SProgramstopp

    5. Spara program på magnetkort

    TI-59 har stöd för magnetkortslagring.

    Spara program:

    2nd  →  Wri  →  01  →  =
    

    Läsa tillbaka:

    2nd  →  Rea  →  01  →  =
    

    6. Vanliga programkommandon

    FunktionTangent
    Starta/stoppa programR/S
    EtikettLBL
    Gå till adress/etikettGTO
    Lagra i registerSTO
    Hämta värdeRCL
    Paus2nd + PSE
    Jämför2nd + CMP
    Programmeringsläge2nd + OP

    Exempelprogram att testa

    LBL A
    + 1 =
    2nd PSE
    GTO A
    

    Starta programmet genom:

    R/S
    

    Sammanfattning

    • TI-59 programmeras genom att spela in tangenttryckningar.
    • Program kan sparas lokalt eller på magnetkort.
    • Loopar skapas med GTO.
    • Etiketter (LBL) ger struktur åt programmet.
    • Pauser, register och villkor kan användas för mer avancerade funktioner.